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1. Introduction

In this paper we consider the problem of solving the nonlinear system of equations
F(e) =0, (1)

where F': IR™ — IR" is a continuously differentiable function. We will be concerned with the fact that the
Jacobian of F at z, say F'(z), may be sparse.

Locally, problem (1) is often solved by Newton’s method. Globally difficulties arise when the Newton
step, s = —[F'(z)]" F(z), lies outside the region where the linear model F(xr) + F'(z)s is a good
approximation to F(zy+s). One effective remedy when this occurs is to restrict the step s to a region where
the linear model can be trusted. The classical approach for accomplishing this objective is the well-known

Levenberg-Marquardt trust-region algorithms where the step sj is the solution of the subproblem

minimize  ||F(zg) + F’(xk)s”g (2a)
subject to [|s||2 < 62, (2b)
The Karush-Kuhn-Tucker conditions for Problem (2) are equivalent to
s(1) = — [F'(z) " F'(2x) + v1] ™ F'(ex)T F () (3a)
v20, [ls(ull3 <6k, and (Js()]f —éx)v =0 (3b)

The solution of Problem (2) is s(vi) where vy satisfies ||s(vk)||2 = 6k, unless [|s(0)}|3 < 8, in which case
5(0) = si¥, i.e. the Newton step is the solution of Problem (2). It can be obtained by the robust Hebden-
Moré implementation of the Levenberg-Marquardt algorithm described in Moré [17]. (2), these conditions
are both necessary and sufficient. However, for larger systems, this approach has the disadvantage that (3)
has to be evaluated for several values of v at each iteration. Also it is not obvious how one utilizes sparsity
here; since multiplying a matrix by its transpose may destroy sparsity.

To avoid solving (3) at each iteration, the dogleg (Powell [18]) or the double dogleg (Dennis and Mei [5])
can be used to obtain a good approximation to the solution of Problem (2). However, we cannot expect
the dogleg strategies to be as robust as the Levenberg-Marquardt algorithm. In fact, Reid [20] adapted the

dogleg method to the sparse case, and reported finding examples for which the method did not converge,
but the standard Levenberg-Marquardt method did converge.

Duff, Nocedal, and Reid [7] suggested replacing the square of the £;-norm in (2a) and (2b) with the
{1-norm in (2a), and the £-norm in (2b). The resulting trust-region subproblem, in a standard manner,
can be reformulated as a linear program, and hence, unlike the Levenberg-Marquardt approach, it is possible

to take advantage of any sparsity patterns in the Jacobian F'(z;). Since f = ||F||; is not differentiable,
Duff, Nocedal and Reid use

I1F(z + )l <(|1F ()|l — col F'(z)s]]s. (4)
as an acceptance criterion. It will be shown in Lemma 2.2, that
—F"(@)slls < f'(=,5), (5)

which implies that the descent condition (4) may be excessively conservative. Duff, Nocedal, and Reid do
not include convergence results. However, they do give a detailed description of their algorithm and its

implementation and point out that it is competitive with other methods.



The use of a different norm in (2a) instead of the square of the £, norm and various alternatives to (2b),
has been suggested and investigated by many authors. Madsen [15] uses the f,-norm and considers the
overdetermined system F(z) = 0 where F : IR" — IR™, n < m. Powell [19] also considered a trust-region
algorithm for minimizing h(F'(x)), where F' : IR" — IR™, n < m, is continuously differentiable and h is any
coercive continuous convex function. Both algorithms in Madsen [15] and in Powell [19] are demonstrated

to be globally convergent in the sense that

where
¥(2) = h(F(2)) — min{h(F(2) + F'(z)s) | ||s]| < 1} .
In a similar approach to Powell [19], Yuan [21] and [22] uses the very simple descent condition
h(P(641)) < h(P(20)).

He proves that liminfy_ 1eo9(zr) = 0.
In the present work, we propose a class of globally convergent trust-region algorithms for approximating

zeros of the square nonlinear system (1). At each iteration, we solve the following model trust-region problem:

minimize  mg(s) = ||F(zk) + F'(z1)s||a (6a)
subject to ||s|]y < &, (6b)

where || ||, and || ||s are two arbitrary but fixed norms on R™.
In Section 2 we compare differentiability properties of the function f = ||F|| and the local model m(s) =

|F'(z) + F'(z)s||. We also derive a rather weak sufficient condition for stationary points to be solutions of
the nonlinear system F'(x) = 0. The General Trust-Region Algorithm is described in Section 3. In Section
4 we extend to arbitrary trust-region algorithms the well-known result that the solution of the Levenberg-
Marquardt model trust-region problem (2) approaches a steepest descent direction as the trust-region radius
approaches zero.

Since In our analysis we will consider iterates having the form (zx,6;) where z and 6; will not be
uniquely specified, we choose to model our algorithm with a point-to-set map. Therefore in Section 5 we
review some properties of point-to-set maps and Zangwill’s convergence theorem [23].

The bulk of our analysis is contained in Section 6 where we demonstrate that the General Trust-Region
Algorithm is globally convergent. In Section 7 we establish that either all accumulation points of the
sequence generated by the General Trust-Region Algorithm are solutions of F(z) = 0 or no linear system
F(z.) + F'(z4)s = 0, where z, is arbitrary accurnulation point of the sequence, has a solution. We then
use a theorem of Eisenstat and Walker [8] to show that the General Trust Region Algorithm converges to
a solution of F'(z) = 0 whenever the iteration sequence has an accumulation point z, such that F'(z4) 1s
nonsingular. The g-quadratic convergence of the algorithm is demonstrated in Section 8 by proving that
the General Trust-Region Algorithm reduces to Newton’s method after a finite number of steps. Finally, in
Section 9 we present a summary and some concluding remarks.

2. Differentiability of f = ||F|| and Optimality Conditions

In this section, we present subdifferentiability properties of f = || F'||, where F' : IR* — IR" is continuously
differentiable. These properties are needed to derive the optimality conditions and to characterize the
solutions of F'(z) = 0.



The locally Lipshitz function f is regular, i.e. its one-sided directional and generalized directional deriva-
tives at € IR™ in the direction s € IR", denoted f'(z;s) and fO(z;s) respectively, exist and are equal They

are defined respectively by
F(a;s) = lim 12T = (@)
t10 t

(7)

and

f(y'{"tst)_f(y). (8)

f2(z;s) = limsup
Yy—x

t10

Moreover the generalized gradient of f at z, denoted df(z), is the subset of IR” defined by
6f(:c):{g€]R"|f0(:c;s)ZgTs, ‘v’sEIR"}. (9)

We refer to [3] for more details about subdifferentiability properties.
The following lemma shows that the local model m, and the function f have the same descent directions.
This is important from an algorithmic point of view.
Lemma 2.1. Let z and s be any points in R"™, F': IR" — IR" a continuously differentiable function at
¢, and f=||F|l. Then
£(39) = m,(0;5), (10)
where

me(s) = [|F(x) + F'(2)s]). (11)

Proof. Because F'is differentiable at z, we have
F(z+ts) = F(z)+tF'(z)s + o(t)

where .
lim & = 0.
t—0 ¢

Using the triangle inequality, we establish that
mg(ts) — f(x) oft)  flz+ts)— f(z)  mg(ts) — f(z) oft)

t
t t ~ t - t +t

and by taking the limit as ¢t decreases to zero, we obtain (10). O

The following lemmas suggest that an approximation of the directional derivative, say v, that can be

used in a relaxed descent condition test should satisfy
c
max { f'(x;s), i [ma(s) = f(z)]} < ¥(z,5). (12)

They also demonstrate the conservatism of the choice (4).
Lemma 2.2. Let x be any point in R™, F: IR" — IR" a continuously differentiable function at ¢, and
F=F|l. Then
F(si8) < 1F() + F@)sll — |1 P(@)] (134)
and

—[lF'()sl| < f'(=; ) (13b)

w



for all s € IR™. Moreover if the linear system

F(z)+ F'(z2)s =0 (14a)

has a solution s, , then

fi(@,80) = =[IF(2)]l. (14b)

Proof. The inequality (13a) is a consequence of the convexity of the function m, and Lemma 2.1. On
the other hand, we have for all s € IR™ and for all positive ¢

[[F () + tF (@)s]] = [|F ()| | < | F'(2)s]),
which, together with the definition of m,, implies
z(ts) — 0
—||IF'(z)s|| < M‘?)t_mx(_) Viso0.
By passing to the limit as { decreases to zero and using Lemma 2.1 we obtain (13b). We now suppose that

the linear system (14a) has a solution s.. Then the inequalities (13a) and (13b) become
F(55.) < -IIF@) and — |F(2)s]| < F/(z:5.).

The result now follows from the equality ||F(z)|| = || F/(z)s.|]. O

The property in equality (14b) is also proved in Burdakov [2] for the special case where s, is the Newton
direction, i.e. s, = —[F'(z)]"!F(z) and also for any norm.

Lemma 2.3.  Assume the hypotheses of Lemma 2.2. Let {s; £ 0,k € IN} be a sequence that converges
to zero. If d is an accumulation point of {di = s /||sk||, k € IN} such that f'(z,d) <0 and 0 < ¢y < ¢1 < 1,
then

Lme(si) = f®)] < f'(2,50), (150)

Co
holds for sufficiently large k € N.
Proof. From the Lipschitz continuity of m, and Lemmma 2.1 we obtain

me(sx) — f(=)

| = f'(z,d). 15b
kENan+00 “Sk” f(l?, ) ( )

Since f'(z,d) < 0 and 0 < ¢y < ¢1, the continuity of f'(z,-) and (15b) imply that
F(@,58) > 2 ma(ss) = £(2). (15¢)

The algorithmic implication of the following lemma is very important as will be seen in Lemma 6.1.
Observe that the choice (4) would not allow us to establish this result.

Lemma 2.4. Assume the hypotheses of Lemma 2.2. Let {s; # 0,k € IN} be a sequence that converges
to zero and satisfies

f(@ +s6) > f(2) + coy(z, se) (16)
where 0 < co < 1 and vy satisfies (12). Then

fi(z,d) >0 (17)



holds for any accumulation point d of the sequence {dy = si/||sk||, k € IN}.
Proof. Let t; = ||si|| and dx = sg/||s||. Let d be any accumulation point of {dr,k € IN}. From (16)

and (12) we obtain
flz +thdi) - f(2)
i

which implies (17), since f is Lipschitz near z and 0 < ¢y < 1. O

> cof'(z; dr)

The standard definition of a stationary point z. of a real-valued function f in unconstrained nonsmooth
optimization is that 0 € 0f(z,). In our case, the function f is regular, therefore this characterization is
equivalent to

f’(-’v*;S)Z 0 (18)

for all s in IR™ (see (9)). The following proposition relates the definition of stationarity to the set of minimizers
of the local model.

Proposition 2.1. Let f = ||F|| where F : IR" — R" is continuously differentiable. Then . € IR" is a
stationary point of f if and only if for all s € R"

I1F (@l S 1F (@) + F'(24)s]) (19)

or equivalently my, (0) < myg, (s) for all s € R™ where my, is given in (10).
Proof. Suppose that @, is a stationary point of f, i.e. f'(z.;s) > 0 for all s € IR”. By Lemma 2.2, we
have

f'(24;8) < My, (s) = mg, (0)

for all s € IR". This, together with (18), implies (19). Now assume that (19) holds, and let s be any point
of IR™. Then, we have
My, (ts) — ma, (0)
t
This, together with Lemma 2.1 implies that f/(x,;s) > 0. O

>0, Vt>O0.

From Proposition 2.1 it is obvious that any solution of the nonlinear system (1) is a stationary point
of f = [|F||. In the following theorem, we establish a sufficient condition for a stationary point z. to be a
solution of to Problem (1).

Theorem 2.1. Let z, be a stationary point of f = ||F||. Then either F(2.) = 0, or the linear system

F(z.)+ F(z,)s =0 (20)

does not have a solution.

Proof. Assume that F'(z,) # 0 and consider a solution s, of the linear system , i.e
F(z.) + F'(z.)sy = 0.

From Lemma 2.2, we conclude that
[ (@ 80) = =||F ()]

This contradicts the hypothesis that z, is a stationary point of f.0
3. The General Trust-Region Algorithm



In this section we define our general trust-region algorithm for approximating a solution of the nondif-
ferentiable optimization problem
minimize;er» f(z) = ||F(2)]|
where F : IR"” — IR" is continuously differentiable.

Let ¢;, : = 0,...,5 be positive scalars such that
O<eg<l O<ep<ern<1<es O<ey<es <,

Also let 6imin be any arbitrary small positive scalar, let zo be any point in IR™, let §; be any positive scalar,

and let || ||, and [| ||s be any two norms on IR™. Consider a real valued upper semi-continuous function 7
defined on

D ={(z,s) €eIR" x R" | my(s)— f(z) < 0} (21a)
and satisfying
max { f'(z;5), = [mo(s) = f(@) ]} < y(a,s) <0 (21b)
0
Suppose that z and é; are the iterate and the trust-region radius determined by the algorithm at the

kt* iteration. The algorithm determines 44, and 84, in the following manner:

STEP 1. Set u; = 6.
STEP 2. Obtain s as a solution of the model trust-region subproblem (6)
STEP 3. If f(zr + si) < f(2x) + coy(zk, sk) set Tx41 = x + 55, and go to STEP 4,
Else choose i such that cyl|sk||s < pr < cs||sk]|s and go to STEP 2;
STEP 4. If f(zx + s&) < f(@r) + co[mr(sk) — f(z1)]
choose 8y 41 so that ||sk|]p < 6r41 < max(ux, es||sells),
Else if f(zr +sk) > f(zr) + co[mr(sk) — (1))
choose é41 such that cal|sg||s < 41 < es|sklls;
Else choose 611 so that cyl|si||s < k41 < max(p, es||sel]s);
STEP 5. Set 6r41 = max(8p41, 6min)-

Definition 3.1. The scalar p; for which the test in STEP 3 of the algorithm is satisfied will be said to
determine an acceptable step with respect to (xy, ;). (observe that it is not an arbitrary p in (0, 6x])

Remark. If z; is not a stationary point of f = ||F|| and §; > 0, we obtain from Lemma 6.1 that
(zk,sk) € D defined in (21a) with m;, = m;. Therefore inequality (21b) is consistent and STEP 3 is well
defined.

Possible choices for the function v used in STEP 3 of the algorithm are

y(z,s) = — [ma(s) — f(2) ] (22a)
for ¢; < ¢g, or
vz, s) = f'(z;s). (22b)

for ¢o << ¢y and sufficiently small s. In the choice (22b), v is upper semi-continuous (see [2, pp.25-26]. In
the choice (22a) v is obviously continuous. Because of (25b) and Lemmas 2.3 and 2.4, our theory does not
allow the Duff, Nocedal and Reid choice [7], i.e.

(2, 5) = —[|F'(2)sllx (22¢)



(see (4)) unless, by Lemma 2.2, we have the extreme case
farsse) = —||F'(zx)sk |1 Yk € IN.

Near a solution we expect sj, to be the Newton step, and in this case the choices (22a), (22b), and (22c) are
equivalent (see Lemma 2.2). It follows that the asymptotic properties of the respective algorithms would be
the same.
4. A Fundamental Property of Trust-Region Algorithms

In this section we will demonstrate that trust-region algorithms enjoy the satisfying property that as
the radius of the trust region approaches zero the solutions of the model trust-region problem approach
directions of steepest descent of f. For the case where this norm is || ||2, this result is well-known and is often
used as a theoretical tool. This result will play an important role in the convergence analysis developed in
a later section.

Theorem 4.1. Letw : IR™ — IR be locally Lipschitz and let & € IR™ be such that the one-sided directional
dertvative w'(z; s) exists for all s € R™. Also let {65,k € IN} be a sequence of real numbers decreasing to 0.

Consider a sequence {sy, k € IN}, where si is a solution of the problem

minimize w(z + s)
subject to ||s|| < 8.

If si # 0 for all k € IN, then any accumulation point d, of {dy = si/||sk||, k € IN} is a steepest descent
direction for w at x with respect to the norm || ||.
Proof. Let s be any vector of norm one, and let d. be any accumulation point of {dr,k € IN}. By

choosing a subsequence, if needed, we can assume without loss of generality that {d;, k € IN} converges to

d,. We have . .
i W@+ sp) —w(@)] < 7 [w(@ + (|sk|s) — w(=)]. (23)
lIsk [l ||

By using the quantities d = si/||sx|| and 5 = ||sg|| in (23) we obtain

w(z + trdy) — w(z) 4 w(z + tidy) — w(z + tpd) < w(z + tgs) — w(z)
tr tr - tr

which implies, because w is locally Lipschitz, that
W'z dy) <w'(zys) .

This inequality means that d, is a steepest descent direction for w at z with respect to the norm [ .0

Remark. In our application the function w can represent either f or m, (see Lemma 2.1).
5. Zangwill’s Global Convergence Theory

In numerical optimization, most algorithms are iterative. Namely, given a point zy € IR™, a sequence
of points {z;,k € IN} is generated recursively according to the defining relation 254, € A(z;) where A4 is a
point-to-set map and any point in the set A(z;) is an acceptable successor point of z.

Notice that the model does not specify the type of problem we are solving. We refer to the set of solutions
as the solution set P. For a specific application, A and P must be defined.

Our motivation for using point-to-set maps to model our algorithm stems from the following theorem due

to Zangwill [23]. We present the theorem as stated in Huard [14]. We first need the following definitions.



Definition 5.1. The point-to-set map A is said to be upper-continuous at z € R" if {zx, k € IN}
converges to z and {yx € A(z;), k € IN} converges to y implies that y € A(z).

Definition 5.2. The point-to-set map A is said to be lower-continuous at z € IR" if for any sequence
{zk, k € IN} converging to x and for any y € A(=), there exist a sequence {yi, k € IN} converging to y and
an integer k such that y, € A(zy) for k> k.

Definition 5.3. The point-to-set map A is said to be continuous at z € IR™ if it is both upper-continuous
and lower-continuous at z.

Theorem 5.1. Consider a compact set E C IR", a solution set P C E, a point-to-set-map A : E — 2
and a continuous function h: E — IR. Assume that for any z € E and z ¢ P we have

() A(=) £0
(i1) h(z') < h(z) for any 2’ € A(2).
(iii) A is upper-continuous at z.

Assume further that a sequence {zx,k € IN} has been obtained by the following recursion relation: let 20
be any point in E, if 2z @ P then zp41 € A(zy), otherwise 2k41 = 2x. Then any accumulation point z, of
{2k, k € IN} is contained in P.

Proof. This theorem is Convergence Theorem A in [23] or is a consequence of Corollary 3 and Remark
6 in [14]. O

More details regarding point-to-set maps can be found in Berge [1], Denel [4], Hogan [11}, Huard [12],
Huard [13] and Huard [14], and Meyer [16].
6. Global Convergence of the General Trust-Region Algorithm

We will establish global convergence of the General Trust-Region Algorithm described in Section 3 by
modeling it by a point-to-set map A which satisfies the hypotheses of Zangwill’s theorem (Theorem 5.1).

If we considered only ¢y = ¢; and 5 given by (22a) (Powell’s choice in [19], then we could obtain global
convergence of our arbitrary norm trust-region algorithm from the global convergence theory developed by
Powell [19]. However, even for this special case the results established in Sections 4, 7, and 8 would be new
and important contributions.

In order to apply Theorem 5.1, we need the following lemma whose proof will be given later.

Lemma 6.1. Let 2 be any point € IR". If the subset of R* Xo = {x € R™ | f(z) < f(zo)} ts bounded,

then there exists a positive scalar 8,4, such that the trust-region radius 6y satisfies
0 < ép <bmas VkeIN. (24)
We will define the compact set of Theorem 5.1 as
E = Xo X [bmin,  bmaz)], (25)

the solution set P will consist of the points (2,6) € E such that x is a stationary point of f, and the merit

function A will be
h(z,5) = f(z). (26)
Finally, the point-to-set map A will be defined as follows:



Definition of the point-to-set A. For z € P, we set A(z) = {2}, and for z = (z,8) ¢ P we say that
7/ = (a',8') € A(z) if the scalar p that determines, with respect to (z, §), an acceptable step s and 2/ = ¢+

satisfy the following five conditions

(a) s = s(p) € argmin{mg(s) [ ||slly < p},
(b) f(") < f(z) + cov(z, );
(¢} if J(@') < J(z) + e2[ma(s) — f(2)],

then lIsl]s < 6" < max(8, csl|s||s);
else if f(&")y > f(z) + ca[ma(s) — f(x)],
then cq|ls||s < 6 < esl|s||s;
else  cqllsllp < 6" < max(8, c3(ls]s);
and
(d) 8 = max(8’, min), (27)

We now state our global convergence theorem.

Theorem 6.1. Consider a continuously differentiable function F : IR" — IR™. Let || ||a and || ||s be
arbitrary norms on IR", let xq be an arbitrary point in R", let f(z) = ||F(x)||a, and let D be defined in
(21a). Assume that the level set Xo = {& € RR" || f(¢) < f(zo)} is bounded and that the function v :D — R
used in Step 3 of the General Trust Region Algorithm is upper semi-continuous and satisfies (21b). Then any
accumulation point of the sequence {zy, k € IN} generated by the General Trust-Region Algorithm presented
in Section 3 using xqy as initial point is a stationary point of f.

The proof of the theorem will require the use of Lemma 6.1 and the following lemmas whose proofs will
be given shortly. We will use || || for either norm || ||4 or || ||s since their use will be clear from the context.

Lemma 6.2. Consider (z,8) where 6 > 0 and z is not a stationary point of f. Then the General
Trust-region Algorithm cannot loop infinitely often between STEP 3 and STEP 2.

Lemma 6.3. The point-to-set map A is upper-continuvous at any (z,8) € E — P.

Proof of Theorem 6.1. It is sufficient to prove that the conditions of Theorem 5.1 hold. Because of
Lemma 6.1 the subset E of IR™ x IR defined by (25) is compact. We also have that the function A defined
on E by (26) is continuous. Let us show that conditions (i), (ii), and (iii) of Theorem 5.1 hold. First, let
z = (z,6) ¢ P. Then, by (25) it is obvious that § > 0, and by Lemma 6.2, there exists u € (0, 6] and
s € argmin{my(s)} | ||s|| < p} such that z’ = = + s satisfies

f@") < f(2) + cov(, 5).

The existence of 8 such that 2/ = (2/,6') € A(2) is obvious. Therefore, property (i) of Zangwill’s Theorem
5.1 holds. Secondly, if (x',6') € A(x,6) it is straightforward from (26), (27¢), and the fact that v satisfies
(21b), that h(2’,6") < h(x,8). This is condition (ii) of Theorem 5.1. The third condition (iii) follows from
Lemma 6.3. Therefore, our theorem is a consequence of Zangwill’s Theorem 5.1 and Lemmas 6.1, 6.2, and
6.3. O

We now return to the proofs of Lemmas 6.1, 6.2, and 6.3

Proof of Lemma 6.1. The sequence {sy = zx4y1 — @,k € IN} is bounded, say by M. Since §py1 <
maz(p, cal|sel|), pre < 8k, and ||sk|] < M, we obtain

Sk4+1 < maz(by, caM). (28)



Assume that there exists a subsequence {6;,k € N’ C IN} diverging to +oo. Let ki € N’ be the smallest
integer such that 6;, > ca M. Then we obtain §; < &, V j > k.,j € IN. This contradicts the divergence
hypothesis of {6;,k € N’ C IN}. Consequently there exists a positive scalar é,,4, such that (24) holds.O
Proof of Lemma 6.2. We prove the contrapositive. Suppose that the algorithm loops indefinitely. Let
{z;,7 € IN} be the sequence generated by letting z; = x + s; where s; is a solution of the following model
trust-region problem
minimize  mg(s) = ||F(z) + F'(z)s||
subject to  ||s]} < p;.
Observe that ||sj41|] < pj41 < esllsj|| for all j € IN and that 0 < ¢4 < 1, so the sequence {||s;l],7 € IN} is
decreasing to s = 0. Under our hypothesis the test in Step 3 fails for all j € IN, thus, since v(z, s;) > f'(2;s;),
we have
flo+ ) > £(@) + cof (@i5;). (29)
Therefore, from Lemma 2.4 we obtain
f(2;d) >0

where d, is any accumulation point of {d;,j € IN}. But from Theorem 4.1 and Lemma 2.1 we obtain that

d. is a steepest descent direction for f at x. Consequently, for all d € IR™ with norm one, we have
f(e;d) >0,

which implies that z 1s a stationary point of f. O

To prove Lemma 6.3 we need the following lemma.

Lemma 6.4. Suppose that the sequence {(zk,6;) € P,k € IN} converges to some (z,6) ¢ P. If py is a
scalar that determines an acceptable step with respect to (z, 6 ), then any accumulation point of {pk, k € IN},
say p, satisfies the inequality

p>0. (30)

Proof of Lemma 6.3. Let {(xg,6;), k € IN} be a sequence that converges to (x.,6,) and let {(x},8,) €
A(zg,6), bk € IN} be a sequence that converges to some (z,,6.). We want to establish that (z,,6.) €
A(®y, b4). By the definition of A4, (x4, 8},) € A(xy, 8 ) implies that there exists a positive scalar p) determining

an acceptable step s such for &}, = s + zj, the following conditions hold.

0 < pgp < O (31&)
s € argmin{my(s) | [l < pe, (31b)
f(=}) < f(zx) + cov(ze, s)- (31c)

The sequence {sx, k € IN} converges to s, such that z, = «, + s,. Let p, be any accumulation point of the
sequence {ug,k € IN}. Since (z,,8.) € S, i.e. z, is not a stationary point of f, by Lemma 6.4 and (31a) we
obtain that

0 < pa < 6. (32)
Now we establish that
5. € argmin{ma(s) | lsll < i}, (33)
We can rewrite (31b) as
sp € argmin{¢(s, zx, ) | s € T(zr, pr)} -
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where ¢(s,z, 1) = mg(s) and T'(z, u) = {s € R" | ||s|| < n}, The point-to-set map 7" is the composition of
the projection Il(y,r) = r which is continuous and the point-to-set map B(r) = {s € R" | r > ||s]|} which is
continuous by Theorem A.10 of [13]. Consequently, by Theorem A.6 of [13], the point-to-set map 7' = Boll
is continuous. Therefore, since the function ¢ is also continuous, we obtain from Theorem A.15 of [13] that

the point-to-set map
b (2, 1) — argmin {9(s, 2, 1) | 5 € T(z, 1)}

is upper-continuous. Because {(zx,pur),k € N’ C IN} converges to (z.,ux), {sx € ¢¥(xp, ),k € N'}
converges to s, , the upper-continuity of ¢ implies (33). The upper semi-continuity of the real-valued function

v implies that the function ¢ defined by

9(z,5) = f(z + 5) — f(z) — coy(z, s)
is lower semi-continuous. This implies, because of (31c¢), that
F(@e + 52) < F(82) + or(@e, 50). (34)

Properties (32), (33) and (34) establish the first three properties needed to conclude that (z!,6.) belongs to
A(zy,84), 1.e. (27a), (27b), and (27c). Let us establish the fourth property (27d). Suppose that

F@e + 5.) = f(2) = c2 {mz. (54) = ms, (0)} < 0. (35a)
The sequence {{zy,6), k € IN} converges to (2., é.), so for all large £ € IN we have
flzr + sp) — f(xr) — ca {mi(sk) — mp(0)} <0,

which gives

llsell < 8 < eamax(ég, esllsk|l),
and consequently, we obtain
s l| < 8L < cgmax(5., calls. ). (35b)
Now suppose that
Foe + 52) = F(@2) — 2 {ma. (52) = ma. (0)} > 0. (36a)
We establish in the same way as (35b) that
callsal] < 6. < esllsa|l. (36b)
Finally, if neither (35a) nor (36a) holds, then necessarily we have

f@e +50) = f(z) = ca{maz, (s4) = mq, (0)} = 0, (37a)

and it is obvious that

callsel < 8 max(5., cols. ) (37h)
holds. Properties (35), (36), and (37) establish (27d). The fifth property

8. = max(6,, bmin)
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is obvious. And we conclude that (z7,6,) € A(z.,é,), and the map A is upper-continuous. O

Now we prove Lemma 6.4.

Proof of Lemma 6.4. Let u be any accumulation point of {uy, & € IN}. Without loss of generality, we
can assume that {uy, k € IN} converges to p. It follows that p; < 6x. We consider two cases:
Case i). We suppose that there exists a subsequence of {yx, k € N’ C IN} such that gy = & in which case
we have y = §. Consequently we obtain (30) because § > §min.
Case ii). Suppose that uy < & for all sufficiently large k£ € IN. Therefore 65 never gives an acceptable step.
Let 5, be the last non-acceptable step obtained by decreasing 8. Since 8; > 0 and zj is not a stationary
point of f we have, by Lemma 6.2, that 5. # 0 and pi > 0. Also we have for large £ € IN

pe = calll]- (38)

Assume that g = 0. From inequality (38) we obtain that {sx | ¥ € IN} converges to zero.

Let st € argmin{mg(s) | ||s|| < px}, and let d* be any accumulation point of {d} = s;/||st|], & € IN}.
Since {ur > 0,k € IN} converges to zero, we obtain from Theorem 4.1 and Lemma 2.1 that d* is a steepest
descent direction of f at z. Consider a subsequence {d},k € N C IN} that converges to d*, and let o) be a

positive scalar such that ||agst|| = ||5x||. Then we have for all sufficiently large k € N
mk(§k)_~ f(=zx) < mk(aksz)*—f(z'k). (39)
15| lle syl
Let us set tx = ||5k|| = ||larsil|, yr = o@xs; and
_ Sk «_ Yb _ Sk
el 5 7 lwill — llsill
Therefore (39) becomes .
m(tede) = fz) _ mr(tedi) = f(or)
tr - 1y '
which implies, since ||di|| = [ldxl] = 1,
f(zp + trdy) — f(z) < [z + tidy) — f(21) n o(t)
tr - tr tr '
Therefore we obtain
. trdr) — . id*) —
lim sup foe +trdi) = f(@e) < limsup fy +td") f(y),
keN—+4o00 tk t
y—x
10
or, since f is regular, ~
trdy) —
limsup Z@EFId) = J@) g g (40a)
kEN -t oo tr

Moreover, since 8 is not acceptable, we have
f(or +5k) > f(@r) + cov(@, 5i)
which implies, together with (21b), that for sufficiently large k € NV

f(@r +trde) — f(zx) S5 e my(trdr) — fzx)
1r ! tr '

12



But since F is continuously differentiable (see (23)), this implies

f(zr + tredy) — f(zr) e + tedi) — f(z) | o(ty)
> (s3] + )
iy ty 23
and because 0 < ¢y <1 -
tedr) —
lim sup 1%k Tt )= J(@e) o g (40b)
kEN— 400 23
From (40a) and (40b), we obtain
fi(w;d™) >0, (41a)
and since d, is a steepest descent direction of f at z, this imnplies that
F(wss) > 0. (41b)

for all s € IR™, which contradicts the hypothesis that z is not a stationary point of f. Therefore any
accumulation point of the sequence {uy | k € IN}, say p, satisfies (30). O
7. Convergence to a Solution of F(z) =0

In this section we establish a mild condition which guarantees that any accumulation point of the sequence
{z1,k € IN} generated by the General Trust-Region Algorithm is actually a solution of the nonlinear system
F(z) = 0. We then demonstrate that if an accumulation point z,. is such that F’(z.) is nonsingular, then
the iteration sequence actually converges to ..

Theorem 7.1. Let S be the sel of accumulation points of the sequence {xy, k € IN} generated by the
General Trust-Region Algorithm. Under the assumptions of Theorem 6.1, one of the following holds:

(1) all accumulation points are solutions of the nonlinear system, i.e

F(z.)=0 Yz, €S8 (42a)
(11) for all z, € S, the linear system

F(zy) + Fl(zs)s =0 (42b)
does not have a solution.

To prove this theorem we will need the following lemma.

Lemma 7.1. Let h: IR" — IR be continuous. Also let {zr, k € IN} be a bounded sequence such that the
sequence {h(zx), k € IN} is decreasing. Then the function h is constant on the set of accumulation points of
{Zk, ke ]N}

Proof . Let z, and z. be two accumulation points of the sequence {zx,k € IN}. Then, there exist two

subsequences {zx,k € N} and {z,k € N'} that converge respectively to z, and z,. We have that for every
j in N, there exists k; in N’ such that

h(za,) < hz), ks > . (33)
From the continuity of h and (33) we obtain

h(2) < h(z). (44)
Since the roles of z, and z, in establishing (44) are symmetric we conclude that

h(z.) = h(zL),
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which establishes the lemma. O

Proof of Theorem 7.1. The function f = ||FJ|, is continuous, the sequence {z,k € IN} is bounded
and the sequence {f(z1), k € IN} is decreasing. Therefore, by Lemma 7.1, f = || F||, is constant on the set
S of accumulation points of {zy, k € IN}. By Theorem 6.1, any z. € S is a stationary point of f. Therefore,
by Theorem 2.1, either any z, € S solves the nonlinear system (1) or no linear system (42b) has a solution.
(m}

Corollary 7.1. Under the assumptions of Theorem 6.1, if the sequence {zp, k € IN} generated by the
General Trust-Region Algorithm has an accumulation point, say z., such that F'(z.) is nonsingular, then
F(z.) = 0 and {zx, k € IN} converges to z..

Proof . By Theorem 6.1, the accumulation point z, is a stationary point of f = [|F(|. Since F'(z.) is

nonsingular, the linear system (42b) has a solution. Therefore, by Theorem 7.1, we obtain
F(z,)=0.

Now the convergence of the sequence {zt, k €} to z. follows from Theorem 3.3 of Eisenstat and Walker [8].0

Remark. Homer Walker pointed out to the authors that the new Eisenstat and Walker theory [8] could
be used to actually demonstrate convergence of the sequence {zy, k € IN} as stated in Corollary 7.1.

8. Q-quadratic Convergence of the General Trust-Region Algorithm

Corollary 7.1 shows that the algorithm, under mild assumptions, generates a sequence {z, k € IN} which
converges to a nonsingular solution. Under the same assumptions, we prove that, for large k, the General
Trust-Region Algorithm reduces to Newton’s method and consequently the convergence of {;, k € IN} to
z, 1s g-quadratic.

Theorem 8.1. Assume that the hypotheses of Theorem 6.1 hold. Also assume that the sequence {zy, k €
IN} generated by the General Trust-Region Algorithm has an accumulation point, say ., such that F'(z.)
is nonsingular and F' is Lipschitz near z«. Then for sufficiently large k, zy is the Newton iterate for the
nonlinear equation F(z) =0, and consequently the convergence of {xi, k € IN} to x. is q-quadratic.

Proof. By Corollary 7.1, the iteration sequence converges to .. To prove that the algorithm, for large

k, is equivalent to Newton’s method, first we establish that the test

flergr) < fleg) + ea[mi(se) — me(0)] (45)

is satisfled for large k. Since F is continuously differentiable we have

fler 4 sk) = [|F(zx) + F'(2x)sk + o(llsk DI,
and therefore
f(ze) = f(zr + sx) > fles) = [ma(si) + [lo|sklDII] -

Because f(zy)— mg(sk) > 0 this implies that

f(zw) — f(zk + s8)
f(zr) — me(se)

Let us show that the ratio

o[£l Isel
Bsel 1 Fan) = (o)’

21— (46)

f(@r) — mi(s)

sl
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is bounded away from zero. Since {zj,k € IN} converges to z., F’'(x.) is nonsingular and F' is continuously
differentiable, there exists k, € IN and 0 < A, such that F'(z;) is nonsingular for all £ > k. and

]]F’(zk)d“ > A d|| Vd e IR® and Vk > k.. (47)

Let us set H H
X = Sk Yr = aksi\f (48)

(B

where skN is the Newton step, 1.e.

F'(zg)sh + F(zi) = 0. (49)
The definition of sz and the nonsingularity of FI(:ck) imply that either s = si¥ or [|sg|| < ||s&. therefore
the inequality ||sk|| < ||sY|| holds for all sufficiently large k, which shows that o} € (0,1]. We have, since
llyell = Nlskll,

flze) = miye) < flzr) — mr(se). (50)
From (48), (49), (50) and ||sx|| = ||yx|| we obtain
I (@e)s Il _ f(ek) = mi(se)
lsel -~ llsell

Using inequality (47) we get
f(xr) — my(sx)

0< A < 51)
el (
for all k > k.. Property (51) and inequality (46) imply that for k > k. we have
f(wk)—f(iﬂk+8k) HO(HSkH)“

fzr) — me(s)
On the other hand, there exists an integer, say k., such that

olllsel)
Il 2

for all k > k.. Consequently, inequality (45) holds for & > k.. Furthermore the trust-region radius is updated

llskll

——II

according to the rule

skl < 841 < max(ug, cal|sell)- (52)
Also, since 0 < ¢, < ¢y, we obtain from (21b) that

coy(zk, sx) > c2 [mi(se) — me(0)]

which, together with (45), implies that §; determines an acceptable step with respect to (zx, 6x), i-e. px = 0
for all k > k.. Therefore, for k > k,, the trust-region radius é; is updated according to the rule

[lse]l < 6kq1 < max(8x, callskl])- (53)

Suppose that there exists an integer k; > k. such that s # 5 for all k > ky. This implies that ||sg|| = 6
for all & > ki and by (52) ||sk|] < ||sk+1]] for all & > k;. This contradicts the hypothesis that {sp =
Zry1 — €k, k € IN} converges to zero. Therefore for all j > k. there exists an integer k; > j such that

SkJ = ka7 (54)
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Let A(z.) be a sufficiently small neighborhood of z. where the local g-quadratic convergence occurs, (see

[6]). Let j be the smallest integer such that zj, € N'(2.). Newton steps in N(z.) verify

s 1l < st

which, by (53) and (54), imply

158,11l < 6k,41,
and consequently

Ski+1 = Sfc\;+1,

and k; + 1 = k;+1. By induction, we establish that
Sk = S{cv

holds for all sufficiently large k, say k& > k’. Consequently the sequence {z,k > k’} generated by the local
version of the General Trust-Region Algorithm is g-quadratically convergent to z.. O
9. Summary and Concluding Remarks

A very successful trust-region algorithm for approximating the solution of the square nonlinear system of
equations F(z) = 0 is the well-known Levenberg-Marquardt trust-region algorithm. The model trust-region
problem in the Levenberg-Marquardt algorithm has the form

minimize  ||F(z)+ F'(z)s||> (5ba)
subject to ||s||§ < é. (55b)
where || ||z denotes the £3-norm on IR™.

Recently Duff, Nocedal and Reid [7] suggested a trust-region algorithm where the Levenberg-Marquardt
model trust-region problem (55) is replaced with the model trust-region problem

minimize  ||F(z)+ F'(z)s||, (56a)
subject to  |ls|]_, < 6. (56b)
In (56a) || || denotes the £;-norm on IR™ and in (56b) || ||co denotes the £o norm on IR™. The subproblem
(56) can be solved using linear programming techniques and allows one to take advantage of sparsity in F’(z).
Duff, Nocedal and Reid [7] gave no convergence analysis, but included convincing numerical experimentation.
Motivated by the work of Duff, Nocedal and Reid, in this paper we have presented a General Trust-Region
Algorithm where the model trust-region problem has the form
minimize  ||F(z)+ F'(x)s]|, (75a)
subject to ||s||, < é. (75b)
where || ||; and || ||s are arbitrary but fixed norms on IR". Levenberg-Marquardt and Duff-Nocedal-Reid are
special cases of our General Trust-Region Algorithm.

Using the tools from convex analysis, nonsmooth optimization and the Zangwill convergence theorem
we have established an effective global convergence theory for our General Trust-Region Algorithm. The
specialization of our theory to the case when || {|a = || |ls = || |l2, i.e., Levenberg-Marquardt gives a global
convergence theorem which is competitive with the standard result.

Our global convergence theory indicates that the choice Duff, Nocedal and Reid made for the descent
condition (criterion for accepting the solution of the model trust-region problem) can be improved and we

suggest alternative choices. Using these choices our global theory applies to the algorithm suggested by Duff,
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Nocedal and Reid. Moreover, using the new Eisenstat and Walker theory, we have been able to show that
the iteration sequence actually converges to a solution of the nonlinear system.

It is satisfying to us that we have been able to demonstrate that our General Trust-Region Algorithm
reduces to Newton’s method after a finite number of steps and consequently the convergence of the algorithm
is g-quadratic.

It is also satisfying that we have been able to demonstrate, for the General Trust-Region Algorithm, an
analog of the well-known result that the solution of the Levenberg-Marquardt model trust-region problem
approaches a steepest descent direction as the trust-region radius approaches zero.

While we have stated our algorithm for functions of the form f = ||F||, a significant amount of our

formulation and theory applies to more general functions, e.g., regular or locally Lipschitz f.
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